7v^2-42=55v

Simple and best practice solution for 7v^2-42=55v equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7v^2-42=55v equation:


Simplifying
7v2 + -42 = 55v

Reorder the terms:
-42 + 7v2 = 55v

Solving
-42 + 7v2 = 55v

Solving for variable 'v'.

Reorder the terms:
-42 + -55v + 7v2 = 55v + -55v

Combine like terms: 55v + -55v = 0
-42 + -55v + 7v2 = 0

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
-6 + -7.857142857v + v2 = 0

Move the constant term to the right:

Add '6' to each side of the equation.
-6 + -7.857142857v + 6 + v2 = 0 + 6

Reorder the terms:
-6 + 6 + -7.857142857v + v2 = 0 + 6

Combine like terms: -6 + 6 = 0
0 + -7.857142857v + v2 = 0 + 6
-7.857142857v + v2 = 0 + 6

Combine like terms: 0 + 6 = 6
-7.857142857v + v2 = 6

The v term is -7.857142857v.  Take half its coefficient (-3.928571429).
Square it (15.43367347) and add it to both sides.

Add '15.43367347' to each side of the equation.
-7.857142857v + 15.43367347 + v2 = 6 + 15.43367347

Reorder the terms:
15.43367347 + -7.857142857v + v2 = 6 + 15.43367347

Combine like terms: 6 + 15.43367347 = 21.43367347
15.43367347 + -7.857142857v + v2 = 21.43367347

Factor a perfect square on the left side:
(v + -3.928571429)(v + -3.928571429) = 21.43367347

Calculate the square root of the right side: 4.62965155

Break this problem into two subproblems by setting 
(v + -3.928571429) equal to 4.62965155 and -4.62965155.

Subproblem 1

v + -3.928571429 = 4.62965155 Simplifying v + -3.928571429 = 4.62965155 Reorder the terms: -3.928571429 + v = 4.62965155 Solving -3.928571429 + v = 4.62965155 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '3.928571429' to each side of the equation. -3.928571429 + 3.928571429 + v = 4.62965155 + 3.928571429 Combine like terms: -3.928571429 + 3.928571429 = 0.000000000 0.000000000 + v = 4.62965155 + 3.928571429 v = 4.62965155 + 3.928571429 Combine like terms: 4.62965155 + 3.928571429 = 8.558222979 v = 8.558222979 Simplifying v = 8.558222979

Subproblem 2

v + -3.928571429 = -4.62965155 Simplifying v + -3.928571429 = -4.62965155 Reorder the terms: -3.928571429 + v = -4.62965155 Solving -3.928571429 + v = -4.62965155 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '3.928571429' to each side of the equation. -3.928571429 + 3.928571429 + v = -4.62965155 + 3.928571429 Combine like terms: -3.928571429 + 3.928571429 = 0.000000000 0.000000000 + v = -4.62965155 + 3.928571429 v = -4.62965155 + 3.928571429 Combine like terms: -4.62965155 + 3.928571429 = -0.701080121 v = -0.701080121 Simplifying v = -0.701080121

Solution

The solution to the problem is based on the solutions from the subproblems. v = {8.558222979, -0.701080121}

See similar equations:

| 6x^2+384=0 | | 4(2p-5)=1+7p | | 1/2-1/3x=1/x-4 | | 1/4x-4=-2 | | 3=4+n | | 6x-4(-4x+17)=42 | | 2(4x-6)=12 | | x+x+2=x | | (6x^2-7x)-(2x^3-x^3)= | | 3/4(8w-12)=3 | | 1200+100d=-190d | | 6x^2-49-45=0 | | 5(2x-1)=84 | | 12x-197=3x-8 | | 3(2x-3)/7=-9 | | 3(2x-1)/7=-9 | | -1/4(-2.8-3/16) | | 5-2t=5t+19 | | 10w^6x^2-8u^6x^4/4x^5 | | 49=6x+5x+5 | | 4Y-20=36X | | 3x-3/4y=24 | | 4=2(u+7)-4u | | 4x-6=6x-2 | | 2(5x+3)=47 | | (7x-14)/((x^2)+7x+12)*((x^2)-9)/(x-2) | | 3z+1=23-3z | | 0+4y=7 | | 8k4/5k | | 50=6x+x+8 | | -9x-21=25-x | | 3x+4(-4x+11)=148 |

Equations solver categories